

Ohio EPA Formula/Conversion Table for Wastewater Treatment & Collection Exams

Alkalinity, as mg $CaCO_3/L = \frac{(Titrant\ Volume, mL)(Acid\ Normality)(50,000)}{Sample\ Volume, mL}$

 $Amps = \frac{Volts}{Ohms}$

*Area of Circle = (.785) (Diameter²) = (π) (Radius²)

Area of Cone (lateral area) = (π) (Radius) $\sqrt{\text{Radius}^2 + \text{Height}^2}$

Area of Cone (total surface area) = (π) (Radius) (Radius + $\sqrt{\text{Radius}^2 + \text{Height}^2}$)

Area of Cylinder (total exterior surface area) = [Surface Area of End #1] + [Surface Area of End #2] + $[(\pi) \text{ (Diameter) (Height or Depth)}]$

*Area of Rectangle = (Length) (Width)

*Area of a Right Triangle = $\frac{\text{(Base) (Height)}}{2}$

Average (arithmetic mean) = $\frac{\text{Sum of All Terms}}{\text{Number of Terms}}$

Average (geometric mean) = $[(X_1)(X_2)(X_3)(X_4)(X_n)]^{1/n}$ The nth root of the product of n numbers

Biochemical Oxygen Demand (unseeded), $mg/L = \frac{[(Initial DO, mg/L) - (Final DO, mg/L)][300mL]}{Sample Volume, mL}$

Chemical Feed Pump Setting, % Stroke = $\frac{\text{Desired Flow}}{\text{Maximum Flow}} \times 100\%$

Chemical Feed Pump Setting, mL/min = $\frac{(\text{Flow}, \text{MGD}) (\text{Dose}, \text{mg/L}) (3.785 \text{ L/gal}) (1,000,000 \text{ gal/MG})}{(\text{Liquid}, \text{mg/mL}) (24 \text{ hr/day}) (60 \text{ min/hr})}$

Circumference of Circle = (π) (Diameter)

= $2(\pi)$ (Radius)

Composite Sample Single Portion = (Instantaneous Flow) (Total Sample Volume) (Number of Portions) (Average Flow)

Cycle Time, min = Storage Volume, gal
Pump Capacity, gpm - Wet Well Inflow, gpm

```
Degrees Celsius = (Degrees Fahrenheit - 32) (5/9)
                        = \frac{\left({}^{\circ}F - 32\right)}{1.8}
  Degrees Fahrenheit = (Degrees Celsius) (9/5) + 32
                            = (Degrees Celsius) (1.8) + 32
  Detention Time = \frac{\text{Volume}}{\text{Flow}}
                                       Units must be compatible
  Dose = Demand + Residual
  *Electromotive Force (EMF), volts = (Current, amps) (Resistance, ohms)
                                                                                                               E = IR
  *Feed Rate, lbs/day = \frac{\text{(Dosage, mg/L) (Capacity, MGD) (8.34 lbs/gal)}}{\text{Purity, % expressed as a decimal}}
                                                  (Backwash Rate, gpm/ft<sup>2</sup>) (12 in/ft)
 Filter Backwash Rise Rate, in/min =
 Filter Flow Rate or Backwash Rate, gpm/ft^2 = \frac{Flow, gpm}{Filter Area, ft^2}
 Filter Yield, lbs/hr/ft<sup>2</sup> = (Solids Loading, lbs/day) (Recovery, % expressed as a decimal)
                                                (Filter Operation, hr/day) (Area, ft<sup>2</sup>)
 *Flow Rate, cfs = (Area, ft^2) (Velocity, ft/sec) or Q = AV Units must be compatible
 Food/Microorganism Ratio = \frac{BOD_5, lbs/day}{MLVSS, lbs}
 *Force, lbs = (Pressure, psi) (Area, in<sup>2</sup>)
 Gallons/Capita/Day = \frac{\text{Volume of Water Produced, gpd}}{\text{Population}}
 Hardness, as mg CaCO<sub>3</sub>/L = \frac{\text{(Titrant Volume, mL)}(1,000)}{\text{Sample Volume, mL}}
                                                                                Only when the titration factor is 1.00 of EDTA
Horsepower, Brake (bhp) = \frac{\text{(Flow, gpm) (Head, ft)}}{\text{(3,960) (Pump Efficiency, % expressed as a decimal)}}
Horsepower, Motor (mhp) =
                                                                 (Flow, gpm) (Head, ft)
                     (3,960) (Pump Efficiency, % expressed as a decimal) (Motor Efficiency, % expressed as a decimal)
*Horsepower, Water (whp) = \frac{(Flow, gpm)(Head, ft)}{2000}
Hydraulic Loading Rate, gpd/ft^2 = \frac{Total Flow Applied, gpd}{Area, ft^2}
```

Leakage,
$$gpd = \frac{Volume, gallons}{Time, days}$$

*Mass, lbs = (Volume, MG) (Concentration, mg/L)(8.34 lbs/gal)

*Mass Flux, lbs/day = (Flow, MGD) (Concentration, mg/L) (8.34 lbs/gal)

Mean Cell Residence Time (MCRT) or Solids Retention Time (SRT), days = Aeration Tank TSS, lbs + Clarifier TSS, lbs
TSS Wasted, lbs/day + Effluent TSS, lb/day

Milliequivalent = (mL) (Normality)

$$Molarity = \frac{Moles of Solute}{Liters of Solution}$$

Motor Efficiency,
$$\% = \frac{\text{Brake hp}}{\text{Motor hp}} \times 100 \%$$

Number of Equivalent Weights =
$$\frac{\text{Total Weight}}{\text{Equivalent Weight}}$$

Number of Moles =
$$\frac{\text{Total Weight}}{\text{Molecular Weight}}$$

Organic Loading Rate, lbs
$$BOD_5/day/ft^3 = \frac{Organic Load, lbs $BOD_5/day}{Volume, ft^3}$$$

Organic Loading Rate-RBC, lbs BOD₅/day/1,000 ft² =
$$\frac{\text{Organic Load, lbs BOD}_5/\text{day}}{\text{Surface Area of Media, 1,000 ft}^2}$$

Oxygen Uptake Rate or Oxygen Consumption Rate,
$$mg/L/min = \frac{Oxygen Usage, mg/L}{Time, min}$$

Population Equivalent, Organic =
$$\frac{(Flow, MGD) (BOD, mg/L) (8.34 lbs/gal)}{BOD/day/person, lbs}$$

Reduction in Flow,
$$\% = \left(\frac{\text{Original Flow - Reduced Flow}}{\text{Original Flow}}\right) \times 100\%$$

Reduction of Volatile Solids,
$$\% = \left(\frac{\ln - Out}{\ln - \left(\ln \times Out\right)}\right) \times 100\%$$
 All information (In and Out) must be in decimal form

Removal,
$$\% = \left(\frac{\ln - Out}{\ln}\right) \times 100\%$$

Return Rate, $\% = \frac{\text{Return Flow Rate}}{\text{Influent Flow Rate}} \times 100\%$

Return Sludge Rate-Solids Balance = (MLSS) (Flow Rate)

Return Activated Sludge Suspended Solids – MLSS

Slope, $\% = \frac{\text{Drop or Rise}}{\text{Distance}} \times 100\%$

Sludge Density Index = $\frac{100}{\text{SVI}}$

Sludge Volume Index (SVI), $mL/g = \frac{(SSV_{30}, mL/L)(1,000 mg/g)}{MLSS, mg/L}$

Solids, mg/L = $\frac{\text{(Dry Solids, grams)} (1,000,000)}{\text{Sample Volume, mL}}$

Solids Concentration, $mg/L = \frac{Weight, mg}{Volume, L}$

Solids Loading Rate, lbs/day/ft² = $\frac{\text{Solids Applied, lbs/day}}{\text{Surface Area, ft}^2}$

Solids Retention Time (SRT): see Mean Cell Residence Time (MCRT)

Specific Gravity = Specific Weight of Substance, lbs/gal Specific Weight of Water, lbs/gal

Specific Oxygen Uptake Rate or Respiration Rate, $(mg/g)/hr = \frac{OUR, mg/L/min(60 min)}{MLVSS, g/L(1 hr)}$

Surface Loading Rate or Surface Overflow Rate, $gpd/ft^2 = \frac{Flow, gpd}{Area. ft^2}$

Three Normal Equation = $(N_1 \times V_1) + (N_2 \times V_2) = (N_3 \times V_3)$ Where $V_1 + V_2 = V_3$

Two Normal Equation = $N_1 \times V_1 = N_2 \times V_2$ Where N = normality, V = volume or flow

Velocity, ft/sec = $\frac{\text{Flow Rate, ft}^3/\text{sec}}{\text{Area, ft}^2}$ or $\frac{\text{Distance, ft}}{\text{Time, sec}}$

Volatile Solids, % = $\left(\frac{\text{Dry Solids, g - Fixed Solids, g}}{\text{Dry Solids, g}}\right) \times 100\%$

*Volume of Cone = (1/3) (.785) (Diameter²) (Height)

= (1/3) [(π) (Radius²) (Height)]

*Volume of Cylinder = (.785) (Diameter²) (Height) = (π) (Radius²) (Height)

*Volume of Rectangular Tank = (Length) (Width) (Height)

Watts (AC circuit) = (Volts) (Amps) (Power Factor)

Watts (DC circuit) = (Volts) (Amps)

Weir Overflow Rate, $gpd/ft = \frac{Flow, gpd}{Weir Length, ft}$

Wire-to-Water Efficiency, $\% = \frac{\text{Water Horsepower, hp}}{\text{Power Input, hp or Motor hp}} \times 100\%$

Wire-to-Water Efficiency, % = $\frac{\text{(Flow, gpm)}(\text{Total Dynamic Head, ft})(0.746 \,\text{kW/hp})}{(3,960)\,(\text{Electrical Demand, kW})} \times 100\%$

Abbrevi	ations:	Abbrevi	ations(continued):
BOD	biochemical oxygen demand	RAS	return activated sludge
CBOD	carbonaceous biochemical	RBC	rotating biological contactor
	oxygen demand	SDI	sludge density index
cfs	cubic feet per second	SRT	solids retention time
COD	chemical oxygen demand	SS	settleable solids
DO	dissolved oxygen	SSV ₃₀	settled sludge volume 30 minute
ft	feet	SVI	sludge volume index
F/M ratio	food to microorganism ratio	TOC	total organic carbon
g	grams	TS	total solids
gpd	gallons per day	TSS	total suspended solids
gpg	grains per gallon	VS	volatile solids
gpm	gallons per minute	WAS	waste activated sludge
hp	horsepower		Ü
hr	hour		ion Factors:
in	inches	l acre =	43,560 square feet
kW	kilowatt	l acre for	ot = 326,000 gallons
lbs	pounds	1 cubic to	pot = 7.48 gallons = 62.4 pounds
mg/L	milligrams per liter	1 cubic fo	oot per second = 0.646 MGD
MCRT	mean cell residence time	1 foot =	0.305 meters
MGD	million gallons per day		water = 0.433 psi
min	minute	l gallon	= 3.79 liters
\mathbf{mL}	milliliter		= 8.34 pounds
MLSS	mixed liquor suspended solids	I grain pe	er gallon = 17.1 mg/L
MLVSS	mixed liquor volatile	1 norsepo	wer = 0.746 kW = 746 watts
	suspended solid		= 33,000 foot lbs/min
OCR	oxygen consumption rate	1 mile =	5,280 feet
ORP	oxidation reduction potential	1 million	gallons per day = 694 gallons per minute
OUR	oxygen uptake rate		= 1.55 cubic feet per second (cfs)
ppb	parts per billion		= 0.454 kilograms
ppm	parts per million	I pound p	er square inch = 2.31 feet of water
psi	pounds per square inch		,000 pounds ,000 mg/L
PE	population equivalent	π or pi =	
Q	flow		U.I. 1.107

*Pie Wheels:

- To find the quantity above the horizontal line: multiply the pie wedges below the line together.
- To solve for one of the pie wedges below the horizontal line: cover that pie wedge, then divide the remaining pie wedge(s) into the quantity above the horizontal line.

Given units must match the units shown in the pie wheel.

Fonnula/Conversion Table

Division of Drinking and Ground Waters

APPLIED WASTEWATER MATH FORMULA SHEET AND CONVERSION FACTORS

12 in = 1 ft

27 cu ft = 1 cu yd

60 sec = 1 min

3 ft = 1 vd

7.48 gal = 1 cu ft

1,000 mg = 1 gm1,000 gm = 1 kg

5,280 ft = 1 mi

8.34 lbs = 1 gal water

60 min = 1 hour

 $144 \text{ sa in} = 1 \text{ft}^2$

 $62.4 \text{ lbs} = 1 \text{ ft}^3 \text{ water}$

1.000 ml = 1 liter1.440 min = 1 day2.31 ft water = 1 psi

 $43.560 \text{ ft}^2 = 1 \text{ acre}$

746 watts = 1 hp

0.433 psi = 1 ft water

10,000 mg/L = 1%454 gm = 1 lb

L = Length

B = Base

 $\pi = 3.14$

W = Width

H = Height

R = Radius

Q = Flow Rate

A = Area

V = Volume

v = velocity

SG = Specific Gravity

Chlorine Demand (mg/L) = dosage (mg/L) - residual (mg/L)

AREA

Rectangle: $A = L \times W$

Triangle: $A = \frac{1}{2}B \times H$

Circle: Area = πR^2

VOLUME

Cylinder: $V = \pi R^2 H$

Rectangle: $V = L \times W \times H$

Cone: $V = 1/3\pi R^2 H$

VELOCITIES and FLOW RATES

1. Velocity = distance

time

2. $Q = v \times A$

DETENTION TIME

Detention Time =

PARTS PER MILLION / POUNDS

lbs = 8.34 lbs / gal x mg/L x MG x SG

SEDIMENTATION AND LOADINGS

Weir overflow rate =

total flow length of weir

2. Surface overflow rate =

Influent flow

surface area

3. Solids Loading rate =

solids applied

surface area

			·

SEDIMENTATION AND LOADINGS (continued)

- 4. Efficiency, % = $\frac{(in) (out)}{(in)}$ x 100%
- 5. Organic loading rate (activated sludge) = CBOD applied V
- 6. Hydraulic loading rate = QA
- 7. Centrifuge hydraulic loading: hydraulic loading rate = Q x run time run time + skim time

ACTIVATED SLUDGE

- 1. SVI = $\frac{30 \text{ min settling, ml/L}}{\text{MLSS, mg/L}} \times \frac{1,000 \text{ mg}}{\text{gram}}$
- 2. SDI = <u>100</u> SVI
- 3. Solids inventory, lbs = (Tank volume, MG) x (solids concentration, mg/L) x (8.34 lbs / gal)
- 4. Sludge age, days = solids under aeration, lbs solids added, lbs / day
- 5. F/M = <u>CBOD applied</u> Organic solids under aeration
- 6. MCRT = solids inventory
 [effluent solids + WAS solids]
- 7. Change, WAS rate, MGD = (current solids inventory, lbs) (desired solids inventory, lbs) WAS, mg/L x 8.34 lbs / gal
- 8. Return sludge rate, MGD = (settleable solids, mL) x Q (1,000 mL) (settleable solids, mL)

SLUDGE DIGESTION

- 1. Dry solids, lbs = (sludge, gal) x (sludge, % solids) x (8.34 lbs / gal) x SG 100%
- Seed Sludge, lbs volatile solids = volatile solids pumped (lbs volatile solids / day) loading factor (lbs VS / day) / lb VS in digester
- 3. Seed Sludge, gal = seed sludge (lbs volatile solids)
 seed sludge (lbs / gal) x (solids %) x (volatile solids %)
 100% (100%)
- 4. Digested sludge removed = Total sludge in volatile solids destroyed
- 5. Lime required, lbs = (sludge, MG) x (volatile acids, mg/L) x (8.34 lbs / gal)

SLUDGE DIGESTION (continued)

- 6. Percent volatile solids reduction = (in out) x 100% in (in x out)
- 7. VS destroyed, lbs / day / cu ft = volatile solids added (lbs / day) x volatile solids reduction (%) digester volume (ft³) x 100%
- 8. Gas production (cu ft / lb VS) = gas produced (ft³ / day)
 VS destroyed (lbs / day)

HORSEPOWER, FORCE, CHEMICAL PUMPS

- 1. Water HP = $\frac{Q(gpm) \times 8.34 \text{ lbs / gal x head (ft)}}{33,000 \text{ ft-lbs / min}}$
- 2. Break HP = Water HP pump efficiency
- 3. Motor HP = <u>BHP</u> motor efficiency
- 4. Upward force = 62.4 (lbs / ft³) x height (ft) x area (ft²)
- 5. Side wall force = 31.2 (lbs / ft³) x volume (ft³)
- 6. Chemical solution, lbs / gal = (solution %) x 8.34 lbs / gal) 100%
- 7. Feed pump flow, gal / day = <u>chemical feed (lbs / day)</u> Chemical solution (lbs / gal)
- 8. Scale setting, % = <u>desired flow (gal / day) (100%)</u> maximum feed rate (gal/day)
- 9. Total Dynamic Head = Static Head + Friction Losses
- 10. Static Head = Suction Lift + Discharge Head
- 11. <u>Polymer solution % = dry polymer (lb)</u>
 100% Vol of solution (gal) x 8.34 (lbs / gal)

LAB PROCEDURES AND MEASUREMENTS

- 1. TSS, mg/L = $\frac{(RDD DD)}{sample vol (mL)}$
- 2. VSS, mg/L = $\frac{(RDD FDD)}{\text{sample vol (mL)}} \times 1M$
 - where: RDD = dried residue + dish + disc (filter)(grams)
 - DD = dish + disc, grams
 - FDD = fired residue + dish + disc (grams)
 - 1M = 1,000,000

LAB PROCEDURES AND MEASUREMENTS (continued)

- 3. VSS, % = volatile solids (mg/L) x 100% total suspended solids (mg/L)
- 4. CBOD sample size (mL) = 1,200 estimated CBOD (mg/L)
- 5. Seed correction, mg/L for 1 mL seed = seed initial D.O. seed final D.O. mL seed added
- 6. CBOD, mg/L = [(Initial D.O. Final D.O.) seed correction factor] x bottle volume (mL) sample volume (mL)
- 7. Initial D.O. = (mL sample x D.O. sample) + (mL dilution water x D.O. dilution water) bottle volume (mL)
- 8. Temperature Conversion: Temperature, F = (temperature C)(1.8) + 32

!	•	•				
					,	•
					·	
			•			
•						
				N ₁		
		•				
-						